عربی مرکز تحقیقات رادیولوژی نوین و تهاجمی | Challenges in developing and validating machine learning models for transcatheter aortic valve implantation mortality risk prediction

عربی مرکز تحقیقات رادیولوژی نوین و تهاجمی | Challenges in developing and validating machine learning models for transcatheter aortic valve implantation mortality risk prediction
TUMS Website | Dec 24 2025
logo

مركز أبحاث الأشعة التشخيصية والتداخلية المتقدمة

  • : 20/03/1446 - 14:03
  • : 113
  • : أقل من دقيقة

Challenges in developing and validating machine learning models for transcatheter aortic valve implantation mortality risk prediction

 {faces}

We read with interest the article by Leha et al., 1 developing and validating the TRIM risk scores for predicting the risk of 30-day mortality following transcatheter aortic valve implantation (TAVI) using machine learning (ML) models. We commend the authors for developing two models based on TAVI pre-procedural (TRIMpre) and post-procedural (TRIMpost) variables; however, we would like to raise some concerns and discuss potential methodological challenges that might have influenced the results.

  • Article_DOI :
  • writers :
  • : پژوهش,مقاله,هوش مصنوعی,مقالات هوش مصنوعی
  • : 280376
مدیر سایت
:

مدیر سایت

0

:

متن درون تصویر را در جعبه متن زیر وارد نمائید *