فعالیت‌های مرکز تحقیقات رادیولوژی در حوزه هوش‌ مصنوعی

با توجه به حجم گسترده داده‌های تصویری که روزانه تولید می‌شود، مراکز تحقیقات رادیولوژی پتانسیل عظیمی برای بهره‌گیری از هوش مصنوعی دارند. این فناوری می‌تواند دقت و سرعت تشخیص بیماری‌ها را به طور چشمگیری بهبود بخشد و به رادیولوژیست‌ها در اتخاذ تصمیمات بالینی آگاهانه کمک کند. در ادامه برخی از فعالیت‌های مراکز تحقیقات رادیولوژی در حوزه هوش مصنوعی آورده شده است:

۱. توسعه الگوریتم‌های تشخیص خودکار بیماری‌ها:

  • تشخیص تومور: توسعه الگوریتم‌هایی برای تشخیص خودکار انواع تومورها در تصاویر رادیولوژی (مانند سی‌تی اسکن، ام‌آر‌آی و پت اسکن).
  • تشخیص بیماری‌های ریوی: تشخیص خودکار بیماری‌هایی مانند پنومونی، کووید-۱۹ و فیبروز ریوی.
  • تشخیص بیماری‌های قلبی-عروقی: تشخیص زودهنگام بیماری‌های قلبی-عروقی مانند آنوریسم آئورت و تنگی عروق کرونر.

 

۲. بهینه‌سازی فرآیندهای تصویربرداری:

  • کاهش دوز پرتو: توسعه الگوریتم‌هایی برای کاهش دوز پرتو در حین انجام تصویربرداری، به ویژه برای کودکان و زنان باردار.
  • بهبود کیفیت تصاویر: استفاده از هوش مصنوعی برای بهبود کیفیت تصاویر رادیولوژی و کاهش نویز.
  • تسهیل تفسیر تصاویر: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تفسیر تصاویر رادیولوژی، مانند برجسته‌سازی مناطق مشکوک.

 

۳. تحلیل داده‌های بزرگ (Big Data):

  • شناسایی الگوها: استفاده از الگوریتم‌های یادگیری ماشین برای شناسایی الگوهای پنهان در داده‌های رادیولوژی و کشف ارتباطات جدید بین بیماری‌ها و عوامل خطر.
  • پیش‌بینی پیشرفت بیماری: پیش‌بینی روند پیشرفت بیماری در بیماران مبتلا به بیماری‌های مزمن.
  • ارزیابی اثربخشی درمان: ارزیابی اثربخشی روش‌های مختلف درمانی بر اساس داده‌های رادیولوژی.

 

 

۴. توسعه ابزارهای کمک‌تشخیصی:

  • کمک به رادیولوژیست‌ها: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تشخیص بیماری‌ها، مانند ابزارهای اندازه‌گیری خودکار و طبقه‌بندی خودکار ضایعات.
  • تفسیر گزارش‌های رادیولوژی: توسعه سیستم‌هایی برای تفسیر خودکار گزارش‌های رادیولوژی و استخراج اطلاعات کلیدی.

 

۵. همکاری با سایر حوزه‌ها:

  • همکاری با مهندسان نرم‌افزار: توسعه و پیاده‌سازی الگوریتم‌های هوش مصنوعی.
  • همکاری با متخصصان پزشکی: اعتبارسنجی مدل‌های هوش مصنوعی و اطمینان از اثربخشی آن‌ها در محیط‌های بالینی.
  • همکاری با دانشمندان داده: جمع‌آوری، پردازش و تحلیل داده‌های رادیولوژی.

 

۶. آموزش و پژوهش:

  • آموزش پرسنل: برگزاری دوره‌های آموزشی برای آشنایی پرسنل مرکز با مفاهیم و کاربردهای هوش مصنوعی در رادیولوژی.
  • انجام پژوهش‌های بنیادی: انجام پژوهش‌های بنیادی در حوزه هوش مصنوعی برای رادیولوژی به منظور توسعه الگوریتم‌های جدید و بهبود روش‌های موجود.
  • انتشار مقالات علمی: انتشار نتایج پژوهش‌ها در مجلات معتبر علمی.

 

جمع‌بندی:
با توجه به پیشرفت‌های سریع در حوزه هوش مصنوعی، نقش آن در رادیولوژی در آینده بیش از پیش پررنگ خواهد شد. مرکز تحقیقات رادیولوژی می‌تواند با سرمایه‌گذاری در این حوزه، سهم بسزایی در پیشرفت‌های پزشکی و بهبود خدمات تشخیصی ایفا کند.

 

دستاوردهای علمی مرکز در زمینه هوش مصنوعی به شرح زیر می باشد:

  • تاریخ انتشار : 1403/12/22 - 09:02
  • number of visits : 15
  • زمان مطالعه : 1 دقیقه

The performance of machine learning for predicting the recurrent stroke: a systematic review and meta-analysis on 24,350 patients

 {faces}

Background: Stroke is a leading cause of death and disability worldwide. Approximately one-third of patients with stroke experienced a second stroke. This study investigates the predictive value of machine learning (ML) algorithms for recurrent stroke.

Method: This study was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Scopus, Embase, and Web of Science (WOS) were searched until January 1, 2024. The quality assessment of studies was conducted using the QUADAS-2 tool. The diagnostic meta-analysis was conducted to calculate the pooled sensitivity, specificity, diagnostic accuracy, positive and negative diagnostic likelihood ratio (DLR), diagnostic accuracy, diagnostic odds ratio (DOR), and area under of the curve (AUC) by the MIDAS package in STATA V.17.

Results: Twelve studies, comprising 24,350 individuals, were included. The meta-analysis revealed a sensitivity of 71% (95% CI 0.64-0.78) and a specificity of 88% (95% confidence interval (CI) 0.76-0.95). Positive and negative DLR were 5.93 (95% CI 3.05-11.55) and 0.33 (95% CI 0.28-0.39), respectively. The diagnostic accuracy and DOR was 2.89 (95% CI 2.32-3.46) and 18.04 (95% CI 10.21-31.87), respectively. The summary ROC curve indicated an AUC of 0.82 (95% CI 0.78-0.85).

Conclusion: ML demonstrates promise in predicting recurrent strokes, with moderate to high sensitivity and specificity. However, the high heterogeneity observed underscores the need for standardized approaches and further research to enhance the reliability and generalizability of these models. ML-based recurrent stroke prediction can potentially augment clinical decision-making and improve patient outcomes by identifying high-risk patients.

  • Article_DOI : 10.1007/s13760-024-02682-y
  • نویسندگان : mohammad amin habibi
  • گروه خبر : پژوهش,research article,AI
  • کد خبر : 292381
مدیر سیستم
تهیه کننده:

مدیر سیستم

0 نظر برای این مطلب وجود دارد

ارسال نظر

نظر خود را وارد نمایید:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه
Close menu