عربی مرکز تحقیقات رادیولوژی نوین و تهاجمی | تمييز أورام عضل الرحم بالتعلم الآلي والرنين

عربی مرکز تحقیقات رادیولوژی نوین و تهاجمی | تمييز أورام عضل الرحم بالتعلم الآلي والرنين
TUMS Website | Dec 25 2025
logo

مركز أبحاث الأشعة التشخيصية والتداخلية المتقدمة

 

أنشطة مركز أبحاث الأشعة في مجال الذكاء الاصطناعي

نظرًا للكم الهائل من بيانات الصور التي تُنتج يوميًا، تمتلك مراكز أبحاث الأشعة إمكانيات كبيرة لاستغلال الذكاء الاصطناعي. يمكن لهذه التقنية أن تحسن بشكل كبير دقة وسرعة تشخيص الأمراض، مما يساعد أطباء الأشعة في اتخاذ قرارات سريرية مستنيرة. فيما يلي بعض الأنشطة التي تقوم بها مراكز أبحاث الأشعة في مجال الذكاء الاصطناعي:

  1. تطوير خوارزميات الكشف التلقائي عن الأمراض:

    • الكشف عن الأورام: تطوير خوارزميات للكشف التلقائي عن الأورام المختلفة في صور الأشعة (مثل الأشعة المقطعية والرنين المغناطيسي والمسح البوزيتروني).
    • الكشف عن أمراض الرئة: الكشف التلقائي عن أمراض مثل الالتهاب الرئوي، وكوفيد-19، والتليف الرئوي.
    • الكشف عن أمراض القلب والأوعية الدموية: الكشف المبكر عن أمراض القلب والأوعية الدموية مثل تمدد الشريان الأورطي وتضيق الشريان التاجي.
    •  
  2. تحسين عمليات التصوير:

    • تقليل جرعة الإشعاع: تطوير خوارزميات لتقليل جرعة الإشعاع أثناء إجراءات التصوير، خاصة للأطفال والحوامل.
    • تحسين جودة الصور: استخدام الذكاء الاصطناعي لتحسين جودة صور الأشعة وتقليل الضوضاء.
    • تسهيل تفسير الصور: تطوير أدوات لمساعدة أطباء الأشعة في تفسير الصور، مثل تسليط الضوء على المناطق المشبوهة. 
      •  
  3. تحليل البيانات الضخمة:

    • تحديد الأنماط: استخدام خوارزميات التعلم الآلي لتحديد الأنماط الخفية في بيانات الأشعة واكتشاف علاقات جديدة بين الأمراض وعوامل الخطر.
    • التنبؤ بتطور الأمراض: التنبؤ بتطور الأمراض لدى المرضى المصابين بحالات مزمنة.
    • تقييم فعالية العلاجات: تقييم فعالية العلاجات المختلفة استنادًا إلى بيانات الأشعة.
    •  
  4. تطوير أدوات مساعدة للتشخيص:

    • مساعدة أطباء الأشعة: تطوير أدوات لمساعدة أطباء الأشعة في تشخيص الأمراض، مثل أدوات القياس التلقائية وتصنيف الآفات تلقائيًا.
    • تفسير تقارير الأشعة: تطوير أنظمة لتفسير تقارير الأشعة تلقائيًا واستخراج المعلومات الأساسية منها.



  5. التعاون مع مجالات أخرى:

    • التعاون مع مهندسي البرمجيات: تطوير وتنفيذ خوارزميات الذكاء الاصطناعي.
    • التعاون مع المتخصصين الطبيين: التحقق من فعالية نماذج الذكاء الاصطناعي وضمان فعاليتها في البيئات السريرية.
    • التعاون مع علماء البيانات: جمع ومعالجة وتحليل بيانات الأشعة.
    •  
  6. التعليم والبحث:

    • تدريب الكوادر: إجراء دورات تدريبية لتعريف العاملين في المركز بمفاهيم الذكاء الاصطناعي وتطبيقاته في مجال الأشعة.
    • إجراء الأبحاث الأساسية: إجراء أبحاث أساسية في مجال الذكاء الاصطناعي لتطوير خوارزميات جديدة وتحسين الأساليب الحالية.
    • نشر المقالات العلمية: نشر نتائج الأبحاث في مجلات علمية مرموقة.
    •  

في الختام، مع التطورات السريعة في مجال الذكاء الاصطناعي، من المتوقع أن يصبح دوره في الأشعة أكثر أهمية في المستقبل. يمكن لمراكز أبحاث الأشعة أن تسهم بشكل كبير في التقدم الطبي وتحسين خدمات التشخيص من خلال الاستثمار في هذا المجال.

 
  • : 18/12/1445 - 11:28
  • : 42
  • : 1 دقيقة

A Diagnostic Algorithm using Multi-parametric MRI to Differentiate Benign from Malignant Myometrial Tumors: Machine-Learning Method

Diagnostic Algorithm using Multi-parametric MRI  Myometrial Tumors {faces}

This study aimed to develop a diagnostic algorithm for preoperative differentiating uterine sarcoma from leiomyoma through a supervised machine-learning method using multi-parametric MRI. A total of 65 participants with 105 myometrial tumors were included: 84 benign and 21 malignant lesions (belonged to 51 and 14 patients, respectively; based on their postoperative tissue diagnosis). Multi-parametric MRI including T1-, T2-, and diffusion-weighted (DW) sequences with ADC-map, contrast-enhanced images, as well as MR spectroscopy (MRS), was performed for each lesion. Thirteen singular MRI features were extracted from the mentioned sequences. Various combination sets of selective features were fed into a machine classifier (coarse decision-tree) to predict malignant or benign tumors. The accuracy metrics of either singular or combinational models were assessed. Eventually, two diagnostic algorithms, a simple decision-tree and a complex one were proposed using the most accurate models. Our final simple decision-tree obtained accuracy = 96.2%, sensitivity = 100% and specificity = 95%; while the complex tree yielded accuracy, sensitivity and specificity of 100%. To summarise, the complex diagnostic algorithm, compared to the simple one, can differentiate tumors with equal sensitivity, but a higher specificity and accuracy. However, it needs some further time-consuming modalities and difficult imaging calculations. Trading-off costs and benefits in appropriate situations must be determinative

  • Article_DOI : 10.1038/s41598-020-64285-w
  • writers : mahrooz malek, hassan hashemi
  • : پژوهش,original,هوش مصنوعی
  • : 294764
مدیر سایت
:

مدیر سایت