عربی مرکز تحقیقات رادیولوژی نوین و تهاجمی | A novel deep learning model for breast lesion classification using ultrasound Images: A multicenter data evaluation

عربی مرکز تحقیقات رادیولوژی نوین و تهاجمی | A novel deep learning model for breast lesion classification using ultrasound Images: A multicenter data evaluation
TUMS Website | Dec 24 2025
logo

مركز أبحاث الأشعة التشخيصية والتداخلية المتقدمة

 

أنشطة مركز أبحاث الأشعة في مجال الذكاء الاصطناعي

نظرًا للكم الهائل من بيانات الصور التي تُنتج يوميًا، تمتلك مراكز أبحاث الأشعة إمكانيات كبيرة لاستغلال الذكاء الاصطناعي. يمكن لهذه التقنية أن تحسن بشكل كبير دقة وسرعة تشخيص الأمراض، مما يساعد أطباء الأشعة في اتخاذ قرارات سريرية مستنيرة. فيما يلي بعض الأنشطة التي تقوم بها مراكز أبحاث الأشعة في مجال الذكاء الاصطناعي:

  1. تطوير خوارزميات الكشف التلقائي عن الأمراض:

    • الكشف عن الأورام: تطوير خوارزميات للكشف التلقائي عن الأورام المختلفة في صور الأشعة (مثل الأشعة المقطعية والرنين المغناطيسي والمسح البوزيتروني).
    • الكشف عن أمراض الرئة: الكشف التلقائي عن أمراض مثل الالتهاب الرئوي، وكوفيد-19، والتليف الرئوي.
    • الكشف عن أمراض القلب والأوعية الدموية: الكشف المبكر عن أمراض القلب والأوعية الدموية مثل تمدد الشريان الأورطي وتضيق الشريان التاجي.
    •  
  2. تحسين عمليات التصوير:

    • تقليل جرعة الإشعاع: تطوير خوارزميات لتقليل جرعة الإشعاع أثناء إجراءات التصوير، خاصة للأطفال والحوامل.
    • تحسين جودة الصور: استخدام الذكاء الاصطناعي لتحسين جودة صور الأشعة وتقليل الضوضاء.
    • تسهيل تفسير الصور: تطوير أدوات لمساعدة أطباء الأشعة في تفسير الصور، مثل تسليط الضوء على المناطق المشبوهة. 
      •  
  3. تحليل البيانات الضخمة:

    • تحديد الأنماط: استخدام خوارزميات التعلم الآلي لتحديد الأنماط الخفية في بيانات الأشعة واكتشاف علاقات جديدة بين الأمراض وعوامل الخطر.
    • التنبؤ بتطور الأمراض: التنبؤ بتطور الأمراض لدى المرضى المصابين بحالات مزمنة.
    • تقييم فعالية العلاجات: تقييم فعالية العلاجات المختلفة استنادًا إلى بيانات الأشعة.
    •  
  4. تطوير أدوات مساعدة للتشخيص:

    • مساعدة أطباء الأشعة: تطوير أدوات لمساعدة أطباء الأشعة في تشخيص الأمراض، مثل أدوات القياس التلقائية وتصنيف الآفات تلقائيًا.
    • تفسير تقارير الأشعة: تطوير أنظمة لتفسير تقارير الأشعة تلقائيًا واستخراج المعلومات الأساسية منها.



  5. التعاون مع مجالات أخرى:

    • التعاون مع مهندسي البرمجيات: تطوير وتنفيذ خوارزميات الذكاء الاصطناعي.
    • التعاون مع المتخصصين الطبيين: التحقق من فعالية نماذج الذكاء الاصطناعي وضمان فعاليتها في البيئات السريرية.
    • التعاون مع علماء البيانات: جمع ومعالجة وتحليل بيانات الأشعة.
    •  
  6. التعليم والبحث:

    • تدريب الكوادر: إجراء دورات تدريبية لتعريف العاملين في المركز بمفاهيم الذكاء الاصطناعي وتطبيقاته في مجال الأشعة.
    • إجراء الأبحاث الأساسية: إجراء أبحاث أساسية في مجال الذكاء الاصطناعي لتطوير خوارزميات جديدة وتحسين الأساليب الحالية.
    • نشر المقالات العلمية: نشر نتائج الأبحاث في مجلات علمية مرموقة.
    •  

في الختام، مع التطورات السريعة في مجال الذكاء الاصطناعي، من المتوقع أن يصبح دوره في الأشعة أكثر أهمية في المستقبل. يمكن لمراكز أبحاث الأشعة أن تسهم بشكل كبير في التقدم الطبي وتحسين خدمات التشخيص من خلال الاستثمار في هذا المجال.

 
  • : 20/03/1446 - 12:44
  • : 156
  • : 1 دقيقة

A novel deep learning model for breast lesion classification using ultrasound Images: A multicenter data evaluation

 {faces}

Purpose: Breast cancer is one of the major reasons of death due to cancer in women. Early diagnosis is the most critical key for disease screening, control, and reducing mortality. A robust diagnosis relies on the correct classification of breast lesions. While breast biopsy is referred to as the "gold standard" in assessing both the activity and degree of breast cancer, it is an invasive and time-consuming approach.

Method: The current study's primary objective was to develop a novel deep-learning architecture based on the InceptionV3 network to classify ultrasound breast lesions. The main promotions of the proposed architecture were converting the InceptionV3 modules to residual inception ones, increasing their number, and altering the hyperparameters. In addition, we used a combination of five datasets (three public datasets and two prepared from different imaging centers) for training and evaluating the model.

Results: The dataset was split into the train (80%) and test (20%) groups. The model achieved 0.83, 0.77, 0.8, 0.81, 0.81, 0.18, and 0.77 for the precision, recall, F1 score, accuracy, AUC, Root Mean Squared Error, and Cronbach's α in the test group, respectively.

Conclusions: This study illustrates that the improved InceptionV3 can robustly classify breast tumors, potentially reducing the need for biopsy in many cases.

Keywords: Breast ultrasound; Convolutional neural network; Deep learning; Image classification.

  • Article_DOI : 10.1016/j.ejmp.2023.102560
  • writers : nasim sirjani ,mostafa ghelich oghli,mohammad kazem tarzamni,masoumeh gity,ali shabanzadeh ,payam ghaderi , isaac shiri ,ardavan akhavan ,mehri faraji
  • : پژوهش,مقاله,هوش مصنوعی,کوید19,کوید
  • : 280233
مدیر سایت
:

مدیر سایت

0

:

متن درون تصویر را در جعبه متن زیر وارد نمائید *