Advanced Diagnostic & Interventional Radiology Research Center | A bimodal BI RADS guided GoogLeNet based CAD system for solid breast masses discrimination using transfer learning

Advanced Diagnostic & Interventional Radiology Research Center | A bimodal BI RADS guided GoogLeNet based CAD system for solid breast masses discrimination using transfer learning
| Dec 11 2025
logo

Advanced Diagnostic & Interventional Radiology Research Center

COVID-19 pandemic 

During the COVID-19 pandemic, the Radiology Research Center at Tehran University of Medical Sciences continued its research activities despite the challenges posed by the increased demand for CT scans of COVID-19 patients and the necessity of adhering to strict health protocols. This center played a crucial role in improving medical imaging techniques, optimizing diagnostic protocols, and advancing technologies related to CT scan image analysis.

Faculty members, researchers, and staff remained committed to ensuring the safety and well-being of healthcare professionals and patients while actively engaging in imaging data analysis, developing artificial intelligence algorithms for faster disease detection, publishing scientific articles, and presenting their findings at international conferences. These efforts aimed to enhance diagnostic accuracy, improve treatment processes, and alleviate pressure on healthcare systems.

 

Key achievements of the Radiology Research Center during the COVID-19 pandemic include:


✔️ Development and optimization of lung imaging protocols for faster and more accurate COVID-19 diagnosis
✔️ Implementation of artificial intelligence technologies for automated CT scan analysis and reduced diagnosis time
✔️ Publication of high-impact research articles on innovative imaging methods for COVID-19 patients
✔️ Participation in national and international projects focused on COVID-19 diagnosis and patient management

The center remains dedicated to advancing research in medical imaging and continues to contribute as a leading scientific institution in improving the quality of diagnostic and therapeutic services.

 

Some of the center's significant achievements during the pandemic include:

 

  • Release Date : Jul 23 2024 - 11:50
  • : 119
  • Study time : 1 minute(s)

A bimodal BI RADS guided GoogLeNet based CAD system for solid breast masses discrimination using transfer learning

 {faces}

Numerous solid breast masses require sophisticated analysis to establish a differential diagnosis. Consequently, complementary modalities such as ultrasound imaging are frequently required to evaluate mammographically further detected masses. Radiologists mentally integrate complementary information from images acquired of the same patient to make a more conclusive and effective diagnosis. However, it has always been a challenging task. This paper details a novel bimodal GoogLeNet-based CAD system that addresses the challenges associated with combining information from mammographic and sonographic images for solid breast mass classification. Each modality is initially trained using two distinct monomodal models in the proposed framework. Then, using the high-level feature maps extracted from both modalities, a bimodal model is trained. In order to fully exploit the BI-RADS descriptors, different image content representations of each mass are obtained and used as input images. In addition, using an ImageNet pre-trained GoogLeNet model, two publicly available databases, and our collected dataset, a two-step transfer learning strategy has been proposed. Our bimodal model achieves the best recognition results in terms of sensitivity, specificity, F1-score, Matthews Correlation Coefficient, area under the receiver operating characteristic curve, and accuracy metrics of 90.91%, 89.87%, 90.32%, 80.78%, 95.82%, and 90.38%, respectively. The promising results indicate that the proposed CAD system can facilitate bimodal suspicious mass analysis and thus contribute significantly to improving breast cancer diagnostic performance.

  • Article_DOI : https://doi.org/10.1016/j.compbiomed.2021.105160
  • Author(s) : nasrin ahmadinejad,zahra assari, ali mahloojifar
  • News Group : research,research article,AI
  • News Code : 277932
مدیر سایت
Author:

مدیر سایت

0 Comments for this article

comment

Post your comment:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
Enter your desired term to search
Theme settings