Advanced Diagnostic & Interventional Radiology Research Center | Systematic bone infection detection in axial diabetic foot MRI

Advanced Diagnostic & Interventional Radiology Research Center | Systematic bone infection detection in axial diabetic foot MRI
| Feb 4 2026
logo

Advanced Diagnostic & Interventional Radiology Research Center

COVID-19 pandemic 

During the COVID-19 pandemic, the Radiology Research Center at Tehran University of Medical Sciences continued its research activities despite the challenges posed by the increased demand for CT scans of COVID-19 patients and the necessity of adhering to strict health protocols. This center played a crucial role in improving medical imaging techniques, optimizing diagnostic protocols, and advancing technologies related to CT scan image analysis.

Faculty members, researchers, and staff remained committed to ensuring the safety and well-being of healthcare professionals and patients while actively engaging in imaging data analysis, developing artificial intelligence algorithms for faster disease detection, publishing scientific articles, and presenting their findings at international conferences. These efforts aimed to enhance diagnostic accuracy, improve treatment processes, and alleviate pressure on healthcare systems.

 

Key achievements of the Radiology Research Center during the COVID-19 pandemic include:


✔️ Development and optimization of lung imaging protocols for faster and more accurate COVID-19 diagnosis
✔️ Implementation of artificial intelligence technologies for automated CT scan analysis and reduced diagnosis time
✔️ Publication of high-impact research articles on innovative imaging methods for COVID-19 patients
✔️ Participation in national and international projects focused on COVID-19 diagnosis and patient management

The center remains dedicated to advancing research in medical imaging and continues to contribute as a leading scientific institution in improving the quality of diagnostic and therapeutic services.

 

Some of the center's significant achievements during the pandemic include:

 

  • Release Date : Mar 3 2024 - 11:14
  • : 25
  • Study time : 1 minute(s)

Systematic bone infection detection in axial diabetic foot MRI (Conference Paper)

This paper presents a system for detecting the toe bones in axial diabetic foot MRI and categorizing them

Systematic bone infection detection in axial diabetic foot MRI  {faces}

Osteomyelitis is an infection of the bone that leads to tissue destruction and often to debility. Early diagnosis of infection is critical, as prompt antibiotic treatment reduces the rate of amputation. Vascular insufficiency and lack of sensation predispose diabetic patients to foot infection that can lead to bone infection. Magnetic Resonance Imaging (MRI) has been shown to be capable of revealing primary marrow abnormalities with improved specificity comparing to other imaging options [1]. There will be an inevitable degree of variability in image interpretation as long as it relies on human visual perception. Therefore, tools that automate pattern recognition and image analysis can support clinical decision-making and may reduce this variability. The proposed system can be used as a basis for the computer-assisted radiology of diabetic foot infection. This paper presents a system for detecting the toe bones in axial diabetic foot MRI and categorizing them. The first aim of the system is to detect the toe bones using segmentation and filtering criteria. Detecting criteria are selected based on the experience of previous diagnoses and medical research in the area. Afterwards, the bag of feature approach is used to categorize the detected toe bones as infected, not infected or noise. For this purpose, we construct the visual vocabulary by clustering features that are extracted from a set of training images and use them to train multiclass linear support vector machine classifier for each of the three categories.

  • Article_DOI : 10.1109/CIBCB.2015.7300276
  • Author(s) : niloofar ayoobi yazdi,maede maftouni
  • News Group : research article,education
  • News Code : 278471
مدیر سایت
Author:

مدیر سایت

Enter your desired term to search
Theme settings