Advanced Diagnostic & Interventional Radiology Research Center | Ultrasonographic versus histopathologic evaluation of carotid a

Advanced Diagnostic & Interventional Radiology Research Center | Ultrasonographic versus histopathologic evaluation of carotid a
| Jan 8 2026
logo

Advanced Diagnostic & Interventional Radiology Research Center

COVID-19 pandemic 

During the COVID-19 pandemic, the Radiology Research Center at Tehran University of Medical Sciences continued its research activities despite the challenges posed by the increased demand for CT scans of COVID-19 patients and the necessity of adhering to strict health protocols. This center played a crucial role in improving medical imaging techniques, optimizing diagnostic protocols, and advancing technologies related to CT scan image analysis.

Faculty members, researchers, and staff remained committed to ensuring the safety and well-being of healthcare professionals and patients while actively engaging in imaging data analysis, developing artificial intelligence algorithms for faster disease detection, publishing scientific articles, and presenting their findings at international conferences. These efforts aimed to enhance diagnostic accuracy, improve treatment processes, and alleviate pressure on healthcare systems.

 

Key achievements of the Radiology Research Center during the COVID-19 pandemic include:


✔️ Development and optimization of lung imaging protocols for faster and more accurate COVID-19 diagnosis
✔️ Implementation of artificial intelligence technologies for automated CT scan analysis and reduced diagnosis time
✔️ Publication of high-impact research articles on innovative imaging methods for COVID-19 patients
✔️ Participation in national and international projects focused on COVID-19 diagnosis and patient management

The center remains dedicated to advancing research in medical imaging and continues to contribute as a leading scientific institution in improving the quality of diagnostic and therapeutic services.

 

Some of the center's significant achievements during the pandemic include:

 

  • Release Date : Dec 20 2023 - 13:29
  • : 34
  • Study time : 1 minute(s)

Ultrasonographic analysis versus histopathologic evaluation of carotid advanced atherosclerotic stenosis in an experimental rabbit model

The aim of this study was to generate an easily reproducible and inexpensive experimental rabbit carotid model of advanced atherosclerosis with morphological similarities to the human disease and the subsequent assessment of the reliability of B-mode ultrasound technology in the study of lumen area stenosis in this model

carotid advanced atherosclerotic stenosis  {faces}

Advanced carotid atherosclerosis with severe stenosis (>70%) is a major clinical risk factor for ischemic stroke. Our ability to test new protocols for the treatment of atherosclerotic stenosis in humans is limited for obvious ethical reasons; therefore, a suitable animal model is required. The aim of this study was to generate an easily reproducible and inexpensive experimental rabbit carotid model of advanced atherosclerosis with morphological similarities to the human disease and the subsequent assessment of the reliability of B-mode ultrasound technology in the study of lumen area stenosis in this model. Briefly, New Zealand white rabbits underwent primary perivascular cold injury at the right common carotid artery followed by a 1.5% cholesterol-rich diet injury for eight weeks. All of the rabbits' arteries were imaged by B-mode ultrasound weekly, after which the rabbits were sacrificed, and their vessels were processed for histopathology. Ultrasound longitudinal view images from three cardiac cycles were processed by a new computerized analyzing method based on dynamic programming and maximum gradient algorithm for measurement of instantaneous changes in arterial wall thickness and lumen diameter in sequential ultrasound images. Histopathology results showed progressive changes, from the lipid-laden cells and fibrous connective tissue proliferation in neointimal layer, up to the fibro-lipid plaque formation, resulting in vessel wall thickening, remodeling and lumen stenosis. The B-mode ultrasound images and the histologic measurements showed an increase in the mean wall thickness and the lumen area stenosis within eight weeks. Quantitative and morphometric analysis of the mean wall thickness and the lumen area stenosis percentage showed a significant correlation between the B-mode ultrasound and the histological measurements at each time point (R = 0.989 and R = 0.995, p < 0.05, respectively). In conclusion, we successfully produced advanced atherosclerosis in the rabbit carotid artery that is similar to the condition seen in patients. This condition in rabbits can be properly assessed by B-mode ultrasound image processing.

  • Article_DOI : 10.1016/j.ultrasmedbio
  • Author(s) : hossein mehrad,manijhe mokhtari-dizaji
  • News Group : research,research article
  • News Code : 278563
مدیر سایت
Author:

مدیر سایت

Enter your desired term to search
Theme settings