| Jul 25 2025
logo

Advanced Diagnostic & Interventional Radiology Research Center

COVID-19 pandemic 

During the COVID-19 pandemic, the Radiology Research Center at Tehran University of Medical Sciences continued its research activities despite the challenges posed by the increased demand for CT scans of COVID-19 patients and the necessity of adhering to strict health protocols. This center played a crucial role in improving medical imaging techniques, optimizing diagnostic protocols, and advancing technologies related to CT scan image analysis.

Faculty members, researchers, and staff remained committed to ensuring the safety and well-being of healthcare professionals and patients while actively engaging in imaging data analysis, developing artificial intelligence algorithms for faster disease detection, publishing scientific articles, and presenting their findings at international conferences. These efforts aimed to enhance diagnostic accuracy, improve treatment processes, and alleviate pressure on healthcare systems.

 

Key achievements of the Radiology Research Center during the COVID-19 pandemic include:


✔️ Development and optimization of lung imaging protocols for faster and more accurate COVID-19 diagnosis
✔️ Implementation of artificial intelligence technologies for automated CT scan analysis and reduced diagnosis time
✔️ Publication of high-impact research articles on innovative imaging methods for COVID-19 patients
✔️ Participation in national and international projects focused on COVID-19 diagnosis and patient management

The center remains dedicated to advancing research in medical imaging and continues to contribute as a leading scientific institution in improving the quality of diagnostic and therapeutic services.

 

Some of the center's significant achievements during the pandemic include:

 

  • Release Date : Sep 22 2024 - 14:08
  • : 63
  • Study time : 1 minute(s)

Differentiation of COVID-19 pneumonia from other lung diseases using CT radiomic features and machine learning: A large multicentric cohort study

 {faces}

To derive and validate an effective machine learning and radiomics-based model to differentiate COVID-19 pneumonia from other lung diseases using a large multi-centric dataset. In this retrospective study, we collected 19 private and five public datasets of chest CT images, accumulating to 26 307 images (15 148 COVID-19; 9657 other lung diseases including non-COVID-19 pneumonia, lung cancer, pulmonary embolism; 1502 normal cases). We tested 96 machine learning-based models by cross-combining four feature selectors (FSs) and eight dimensionality reduction techniques with eight classifiers. We trained and evaluated our models using three different strategies: #1, the whole dataset (15 148 COVID-19 and 11 159 other); #2, a new dataset after excluding healthy individuals and COVID-19 patients who did not have RT-PCR results (12 419 COVID-19 and 8278 other); and #3 only non-COVID-19 pneumonia patients and a random sample of COVID-19 patients (3000 COVID-19 and 2582 others) to provide balanced classes. The best models were chosen by one-standard-deviation rule in 10-fold cross-validation and evaluated on the hold out test sets for reporting. In strategy#1, Relief FS combined with random forest (RF) classifier resulted in the highest performance (accuracy = 0.96, AUC = 0.99, sensitivity = 0.98, specificity = 0.94, PPV = 0.96, and NPV = 0.96). In strategy#2, Recursive Feature Elimination (RFE) FS and RF classifier combination resulted in the highest performance (accuracy = 0.97, AUC = 0.99, sensitivity = 0.98, specificity = 0.95, PPV = 0.96, NPV = 0.98). Finally, in strategy #3, the ANOVA FS and RF classifier combination resulted in the highest performance (accuracy = 0.94, AUC =0.98, sensitivity = 0.96, specificity = 0.93, PPV = 0.93, NPV = 0.96). Lung radiomic features combined with machine learning algorithms can enable the effective diagnosis of COVID-19 pneumonia in CT images without the use of additional tests.

  • Article_DOI : https://doi.org/10.1002/ima.23028
  • Author(s) : isaac shiri,yazdan salimi,abdollah saberi,masoumeh pakbin, ghasem hajianfar
  • News Group : research,covid
  • News Code : 278757
نفیسه سادات قوامی
Author:

نفیسه سادات قوامی

0 Comments for this article

comment

Post your comment:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
Enter your desired term to search
Theme settings
Close menu