فعالیت‌های مرکز تحقیقات رادیولوژی در حوزه هوش‌ مصنوعی

با توجه به حجم گسترده داده‌های تصویری که روزانه تولید می‌شود، مراکز تحقیقات رادیولوژی پتانسیل عظیمی برای بهره‌گیری از هوش مصنوعی دارند. این فناوری می‌تواند دقت و سرعت تشخیص بیماری‌ها را به طور چشمگیری بهبود بخشد و به رادیولوژیست‌ها در اتخاذ تصمیمات بالینی آگاهانه کمک کند. در ادامه برخی از فعالیت‌های مراکز تحقیقات رادیولوژی در حوزه هوش مصنوعی آورده شده است:

۱. توسعه الگوریتم‌های تشخیص خودکار بیماری‌ها:

  • تشخیص تومور: توسعه الگوریتم‌هایی برای تشخیص خودکار انواع تومورها در تصاویر رادیولوژی (مانند سی‌تی اسکن، ام‌آر‌آی و پت اسکن).
  • تشخیص بیماری‌های ریوی: تشخیص خودکار بیماری‌هایی مانند پنومونی، کووید-۱۹ و فیبروز ریوی.
  • تشخیص بیماری‌های قلبی-عروقی: تشخیص زودهنگام بیماری‌های قلبی-عروقی مانند آنوریسم آئورت و تنگی عروق کرونر.

 

۲. بهینه‌سازی فرآیندهای تصویربرداری:

  • کاهش دوز پرتو: توسعه الگوریتم‌هایی برای کاهش دوز پرتو در حین انجام تصویربرداری، به ویژه برای کودکان و زنان باردار.
  • بهبود کیفیت تصاویر: استفاده از هوش مصنوعی برای بهبود کیفیت تصاویر رادیولوژی و کاهش نویز.
  • تسهیل تفسیر تصاویر: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تفسیر تصاویر رادیولوژی، مانند برجسته‌سازی مناطق مشکوک.

 

۳. تحلیل داده‌های بزرگ (Big Data):

  • شناسایی الگوها: استفاده از الگوریتم‌های یادگیری ماشین برای شناسایی الگوهای پنهان در داده‌های رادیولوژی و کشف ارتباطات جدید بین بیماری‌ها و عوامل خطر.
  • پیش‌بینی پیشرفت بیماری: پیش‌بینی روند پیشرفت بیماری در بیماران مبتلا به بیماری‌های مزمن.
  • ارزیابی اثربخشی درمان: ارزیابی اثربخشی روش‌های مختلف درمانی بر اساس داده‌های رادیولوژی.

 

 

۴. توسعه ابزارهای کمک‌تشخیصی:

  • کمک به رادیولوژیست‌ها: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تشخیص بیماری‌ها، مانند ابزارهای اندازه‌گیری خودکار و طبقه‌بندی خودکار ضایعات.
  • تفسیر گزارش‌های رادیولوژی: توسعه سیستم‌هایی برای تفسیر خودکار گزارش‌های رادیولوژی و استخراج اطلاعات کلیدی.

 

۵. همکاری با سایر حوزه‌ها:

  • همکاری با مهندسان نرم‌افزار: توسعه و پیاده‌سازی الگوریتم‌های هوش مصنوعی.
  • همکاری با متخصصان پزشکی: اعتبارسنجی مدل‌های هوش مصنوعی و اطمینان از اثربخشی آن‌ها در محیط‌های بالینی.
  • همکاری با دانشمندان داده: جمع‌آوری، پردازش و تحلیل داده‌های رادیولوژی.

 

۶. آموزش و پژوهش:

  • آموزش پرسنل: برگزاری دوره‌های آموزشی برای آشنایی پرسنل مرکز با مفاهیم و کاربردهای هوش مصنوعی در رادیولوژی.
  • انجام پژوهش‌های بنیادی: انجام پژوهش‌های بنیادی در حوزه هوش مصنوعی برای رادیولوژی به منظور توسعه الگوریتم‌های جدید و بهبود روش‌های موجود.
  • انتشار مقالات علمی: انتشار نتایج پژوهش‌ها در مجلات معتبر علمی.

 

جمع‌بندی:
با توجه به پیشرفت‌های سریع در حوزه هوش مصنوعی، نقش آن در رادیولوژی در آینده بیش از پیش پررنگ خواهد شد. مرکز تحقیقات رادیولوژی می‌تواند با سرمایه‌گذاری در این حوزه، سهم بسزایی در پیشرفت‌های پزشکی و بهبود خدمات تشخیصی ایفا کند.

 

دستاوردهای علمی مرکز در زمینه هوش مصنوعی به شرح زیر می باشد:

  • تاریخ انتشار : 1403/12/26 - 08:28
  • number of visits : 11
  • زمان مطالعه : 2 دقیقه

Differential privacy preserved federated learning for prognostic modeling in COVID-19 patients using large multi-institutional chest CT dataset

 {faces}

Background: Notwithstanding the encouraging results of previous studies reporting on the efficiency of deep learning (DL) in COVID-19 prognostication, clinical adoption of the developed methodology still needs to be improved. To overcome this limitation, we set out to predict the prognosis of a large multi-institutional cohort of patients with COVID-19 using a DL-based model.

Purpose: This study aimed to evaluate the performance of deep privacy-preserving federated learning (DPFL) in predicting COVID-19 outcomes using chest CT images.

Methods: After applying inclusion and exclusion criteria, 3055 patients from 19 centers, including 1599 alive and 1456 deceased, were enrolled in this study. Data from all centers were split (randomly with stratification respective to each center and class) into a training/validation set (70%/10%) and a hold-out test set (20%). For the DL model, feature extraction was performed on 2D slices, and averaging was performed at the final layer to construct a 3D model for each scan. The DensNet model was used for feature extraction. The model was developed using centralized and FL approaches. For FL, we employed DPFL approaches. Membership inference attack was also evaluated in the FL strategy. For model evaluation, different metrics were reported in the hold-out test sets. In addition, models trained in two scenarios, centralized and FL, were compared using the DeLong test for statistical differences.

Results: The centralized model achieved an accuracy of 0.76, while the DPFL model had an accuracy of 0.75. Both the centralized and DPFL models achieved a specificity of 0.77. The centralized model achieved a sensitivity of 0.74, while the DPFL model had a sensitivity of 0.73. A mean AUC of 0.82 and 0.81 with 95% confidence intervals of (95% CI: 0.79-0.85) and (95% CI: 0.77-0.84) were achieved by the centralized model and the DPFL model, respectively. The DeLong test did not prove statistically significant differences between the two models (p-value = 0.98). The AUC values for the inference attacks fluctuate between 0.49 and 0.51, with an average of 0.50 ± 0.003 and 95% CI for the mean AUC of 0.500 to 0.501.

Conclusion: The performance of the proposed model was comparable to centralized models while operating on large and heterogeneous multi-institutional datasets. In addition, the model was resistant to inference attacks, ensuring the privacy of shared data during the training process.

  • Article_DOI : 10.1002/mp.16964
  • نویسندگان : isaac shiri
  • گروه خبر : پژوهش,research article,covid19,AI
  • کد خبر : 292604
مدیر سایت
تهیه کننده:

مدیر سایت

0 نظر برای این مطلب وجود دارد

ارسال نظر

نظر خود را وارد نمایید:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه
Close menu