فعالیت‌های مرکز تحقیقات رادیولوژی در حوزه هوش‌ مصنوعی

با توجه به حجم گسترده داده‌های تصویری که روزانه تولید می‌شود، مراکز تحقیقات رادیولوژی پتانسیل عظیمی برای بهره‌گیری از هوش مصنوعی دارند. این فناوری می‌تواند دقت و سرعت تشخیص بیماری‌ها را به طور چشمگیری بهبود بخشد و به رادیولوژیست‌ها در اتخاذ تصمیمات بالینی آگاهانه کمک کند. در ادامه برخی از فعالیت‌های مراکز تحقیقات رادیولوژی در حوزه هوش مصنوعی آورده شده است:

۱. توسعه الگوریتم‌های تشخیص خودکار بیماری‌ها:

  • تشخیص تومور: توسعه الگوریتم‌هایی برای تشخیص خودکار انواع تومورها در تصاویر رادیولوژی (مانند سی‌تی اسکن، ام‌آر‌آی و پت اسکن).
  • تشخیص بیماری‌های ریوی: تشخیص خودکار بیماری‌هایی مانند پنومونی، کووید-۱۹ و فیبروز ریوی.
  • تشخیص بیماری‌های قلبی-عروقی: تشخیص زودهنگام بیماری‌های قلبی-عروقی مانند آنوریسم آئورت و تنگی عروق کرونر.

 

۲. بهینه‌سازی فرآیندهای تصویربرداری:

  • کاهش دوز پرتو: توسعه الگوریتم‌هایی برای کاهش دوز پرتو در حین انجام تصویربرداری، به ویژه برای کودکان و زنان باردار.
  • بهبود کیفیت تصاویر: استفاده از هوش مصنوعی برای بهبود کیفیت تصاویر رادیولوژی و کاهش نویز.
  • تسهیل تفسیر تصاویر: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تفسیر تصاویر رادیولوژی، مانند برجسته‌سازی مناطق مشکوک.

 

۳. تحلیل داده‌های بزرگ (Big Data):

  • شناسایی الگوها: استفاده از الگوریتم‌های یادگیری ماشین برای شناسایی الگوهای پنهان در داده‌های رادیولوژی و کشف ارتباطات جدید بین بیماری‌ها و عوامل خطر.
  • پیش‌بینی پیشرفت بیماری: پیش‌بینی روند پیشرفت بیماری در بیماران مبتلا به بیماری‌های مزمن.
  • ارزیابی اثربخشی درمان: ارزیابی اثربخشی روش‌های مختلف درمانی بر اساس داده‌های رادیولوژی.

 

 

۴. توسعه ابزارهای کمک‌تشخیصی:

  • کمک به رادیولوژیست‌ها: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تشخیص بیماری‌ها، مانند ابزارهای اندازه‌گیری خودکار و طبقه‌بندی خودکار ضایعات.
  • تفسیر گزارش‌های رادیولوژی: توسعه سیستم‌هایی برای تفسیر خودکار گزارش‌های رادیولوژی و استخراج اطلاعات کلیدی.

 

۵. همکاری با سایر حوزه‌ها:

  • همکاری با مهندسان نرم‌افزار: توسعه و پیاده‌سازی الگوریتم‌های هوش مصنوعی.
  • همکاری با متخصصان پزشکی: اعتبارسنجی مدل‌های هوش مصنوعی و اطمینان از اثربخشی آن‌ها در محیط‌های بالینی.
  • همکاری با دانشمندان داده: جمع‌آوری، پردازش و تحلیل داده‌های رادیولوژی.

 

۶. آموزش و پژوهش:

  • آموزش پرسنل: برگزاری دوره‌های آموزشی برای آشنایی پرسنل مرکز با مفاهیم و کاربردهای هوش مصنوعی در رادیولوژی.
  • انجام پژوهش‌های بنیادی: انجام پژوهش‌های بنیادی در حوزه هوش مصنوعی برای رادیولوژی به منظور توسعه الگوریتم‌های جدید و بهبود روش‌های موجود.
  • انتشار مقالات علمی: انتشار نتایج پژوهش‌ها در مجلات معتبر علمی.

 

جمع‌بندی:
با توجه به پیشرفت‌های سریع در حوزه هوش مصنوعی، نقش آن در رادیولوژی در آینده بیش از پیش پررنگ خواهد شد. مرکز تحقیقات رادیولوژی می‌تواند با سرمایه‌گذاری در این حوزه، سهم بسزایی در پیشرفت‌های پزشکی و بهبود خدمات تشخیصی ایفا کند.

 

دستاوردهای علمی مرکز در زمینه هوش مصنوعی به شرح زیر می باشد:

  • تاریخ انتشار : 1403/12/21 - 13:43
  • number of visits : 21
  • زمان مطالعه : کمتر از یک دقیقه

Potential strength and weakness of artificial intelligence integration in emergency radiology: a review of diagnostic utilizations and applications in patient care optimization

 {faces}

Artificial intelligence (AI) and its recent increasing healthcare integration has created both new opportunities and challenges in the practice of radiology and medical imaging. Recent advancements in AI technology have allowed for more workplace efficiency, higher diagnostic accuracy, and overall improvements in patient care. Limitations of AI such as data imbalances, the unclear nature of AI algorithms, and the challenges in detecting certain diseases make it difficult for its widespread adoption. This review article presents cases involving the use of AI models to diagnose intracranial hemorrhage, spinal fractures, and rib fractures, while discussing how certain factors like, type, location, size, presence of artifacts, calcification, and post-surgical changes, affect AI model performance and accuracy. While the use of artificial intelligence has the potential to improve the practice of emergency radiology, it is important to address its limitations to maximize its advantages while ensuring the safety of patients overall.

  • Article_DOI :
  • نویسندگان : ali gholamrezanezhad,mobina fathi,delaram ghadimi
  • گروه خبر : پژوهش,research article,AI
  • کد خبر : 292349
مدیر سایت
تهیه کننده:

مدیر سایت

0 نظر برای این مطلب وجود دارد

ارسال نظر

نظر خود را وارد نمایید:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه
Close menu