فعالیت‌های مرکز تحقیقات رادیولوژی در حوزه هوش‌ مصنوعی

با توجه به حجم گسترده داده‌های تصویری که روزانه تولید می‌شود، مراکز تحقیقات رادیولوژی پتانسیل عظیمی برای بهره‌گیری از هوش مصنوعی دارند. این فناوری می‌تواند دقت و سرعت تشخیص بیماری‌ها را به طور چشمگیری بهبود بخشد و به رادیولوژیست‌ها در اتخاذ تصمیمات بالینی آگاهانه کمک کند. در ادامه برخی از فعالیت‌های مراکز تحقیقات رادیولوژی در حوزه هوش مصنوعی آورده شده است:

۱. توسعه الگوریتم‌های تشخیص خودکار بیماری‌ها:

  • تشخیص تومور: توسعه الگوریتم‌هایی برای تشخیص خودکار انواع تومورها در تصاویر رادیولوژی (مانند سی‌تی اسکن، ام‌آر‌آی و پت اسکن).
  • تشخیص بیماری‌های ریوی: تشخیص خودکار بیماری‌هایی مانند پنومونی، کووید-۱۹ و فیبروز ریوی.
  • تشخیص بیماری‌های قلبی-عروقی: تشخیص زودهنگام بیماری‌های قلبی-عروقی مانند آنوریسم آئورت و تنگی عروق کرونر.

 

۲. بهینه‌سازی فرآیندهای تصویربرداری:

  • کاهش دوز پرتو: توسعه الگوریتم‌هایی برای کاهش دوز پرتو در حین انجام تصویربرداری، به ویژه برای کودکان و زنان باردار.
  • بهبود کیفیت تصاویر: استفاده از هوش مصنوعی برای بهبود کیفیت تصاویر رادیولوژی و کاهش نویز.
  • تسهیل تفسیر تصاویر: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تفسیر تصاویر رادیولوژی، مانند برجسته‌سازی مناطق مشکوک.

 

۳. تحلیل داده‌های بزرگ (Big Data):

  • شناسایی الگوها: استفاده از الگوریتم‌های یادگیری ماشین برای شناسایی الگوهای پنهان در داده‌های رادیولوژی و کشف ارتباطات جدید بین بیماری‌ها و عوامل خطر.
  • پیش‌بینی پیشرفت بیماری: پیش‌بینی روند پیشرفت بیماری در بیماران مبتلا به بیماری‌های مزمن.
  • ارزیابی اثربخشی درمان: ارزیابی اثربخشی روش‌های مختلف درمانی بر اساس داده‌های رادیولوژی.

 

 

۴. توسعه ابزارهای کمک‌تشخیصی:

  • کمک به رادیولوژیست‌ها: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تشخیص بیماری‌ها، مانند ابزارهای اندازه‌گیری خودکار و طبقه‌بندی خودکار ضایعات.
  • تفسیر گزارش‌های رادیولوژی: توسعه سیستم‌هایی برای تفسیر خودکار گزارش‌های رادیولوژی و استخراج اطلاعات کلیدی.

 

۵. همکاری با سایر حوزه‌ها:

  • همکاری با مهندسان نرم‌افزار: توسعه و پیاده‌سازی الگوریتم‌های هوش مصنوعی.
  • همکاری با متخصصان پزشکی: اعتبارسنجی مدل‌های هوش مصنوعی و اطمینان از اثربخشی آن‌ها در محیط‌های بالینی.
  • همکاری با دانشمندان داده: جمع‌آوری، پردازش و تحلیل داده‌های رادیولوژی.

 

۶. آموزش و پژوهش:

  • آموزش پرسنل: برگزاری دوره‌های آموزشی برای آشنایی پرسنل مرکز با مفاهیم و کاربردهای هوش مصنوعی در رادیولوژی.
  • انجام پژوهش‌های بنیادی: انجام پژوهش‌های بنیادی در حوزه هوش مصنوعی برای رادیولوژی به منظور توسعه الگوریتم‌های جدید و بهبود روش‌های موجود.
  • انتشار مقالات علمی: انتشار نتایج پژوهش‌ها در مجلات معتبر علمی.

 

جمع‌بندی:
با توجه به پیشرفت‌های سریع در حوزه هوش مصنوعی، نقش آن در رادیولوژی در آینده بیش از پیش پررنگ خواهد شد. مرکز تحقیقات رادیولوژی می‌تواند با سرمایه‌گذاری در این حوزه، سهم بسزایی در پیشرفت‌های پزشکی و بهبود خدمات تشخیصی ایفا کند.

 

دستاوردهای علمی مرکز در زمینه هوش مصنوعی به شرح زیر می باشد:

  • تاریخ انتشار : 1403/12/26 - 12:38
  • number of visits : 15
  • زمان مطالعه : 1 دقیقه

Evaluation of Features in Probably Benign and Malignant Nonmass Enhancement in Breast MRI

 {faces}

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a highly sensitive breast imaging modality in detecting breast carcinoma. Nonmass enhancement (NME) is uniquely seen on MRI of the breast. The correlation between NME features and pathologic results has not been extensively explored. Our goal was to evaluate the characteristics of probably benign and suspicious NME lesions in MRI and determine which features are more associated with malignancy. We performed a retrospective research after approval by the hospital ethics committee on women who underwent breast MRI from March 2017 to March 2020 and identified 63 lesions of all 400 NME that were categorized as probably benign or suspicious according to the BI-RADS classification (version 2013). MRI features of NME findings including the location, size, distribution and enhancement pattern, kinetic curve, diffusion restriction, and also pathology result or 6-12-month follow-up MRI were evaluated and analyzed in each group (probably benign or suspicious NME). Vacuum-guided biopsies (VAB) were performed under mammographic or sonographic guidance and confirmed with MRI by visualization of the inserted clips. Segmental distribution and clustered ring internal enhancement were significantly associated with malignancy (p value<0.05), while linear distribution or homogeneous enhancement patterns were associated with benignity (p value <0.05). Additionally, the plateau and washout types in the dynamic curve were only seen in malignant lesions (p value <0.05). The presence of DWI restriction in NME lesions was also found to be a statistically important factor. Understanding the imaging findings of malignant NME is helpful to determine when biopsy is indicated. The correlation between NME features and pathologic results is critical in making appropriate management.

  • Article_DOI : 10.1155/2024/6661849
  • نویسندگان : nasrin ahmadinejad,arvin arian
  • گروه خبر : پژوهش,research article,AI
  • کد خبر : 292689
مدیر سیستم
تهیه کننده:

مدیر سیستم

0 نظر برای این مطلب وجود دارد

ارسال نظر

نظر خود را وارد نمایید:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه
Close menu