29 دی 1403
logo

مرکز تحقیقات رادیولوژی نوین و تهاجمی

دانشگاه علوم پزشکی تهران

  • تاریخ انتشار : 1403/05/02 - 10:14
  • تعداد بازدید : 47
  • زمان مطالعه : 1 دقیقه

COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients: COVID-19 prognostic modeling using CT radiomics and machine learning

 {faces}

Background: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.

Methods: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported.

Results: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81-0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance.

Conclusion: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.

  • Article_DOI : 10.1016/j.compbiomed.2022.105467
  • نویسندگان : shahriar kolahi ,isaac shiri ,yazdan salimi,masoumeh pakbin,ghasem hajianfar,atlas haddadi avval ,amirhossein sanaat , shayan mostafaei , azadeh akhavanallaf,abdollah saberi ,zahra mansouri, dariush askari , mohammadreza ghasemian, ehsan sharifipour,saleh sandoughdaran, ahmad sohrabi , elham sadati , somayeh livani , pooya iranpour , maziar khateri, salar bijari , mohammad reza atashzar,sajad p shayesteh, bardia khosravi , mohammad reza babaei , elnaz jenabi,mohammad hasanian ,alireza shahhamzeh,seyaed yaser foroghi ghomi ,abolfazl mozafari, arash teimouri,fatemeh movaseghi, azin ahmari , neda goharpey,rama bozorgmehr , roozbeh mortazavi , jalal karimi,nazanin mortazavi,sima besharat,mandana afsharpad, hamid abdollahi,parham geramifar, amir reza radmard, hossein arabi, kiara rezaei-kalantari ,mehrdad oveisi, arman rahmim, habib zaidi
  • گروه خبر : پژوهش,مقالات,research article
  • کد خبر : 272505
کلمات کلیدی
مدیر سایت
تهیه کننده:

مدیر سایت

0 نظر برای این مطلب وجود دارد

ارسال نظر

نظر خود را وارد نمایید:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه