مرکز تحقیقات رادیولوژی نوین و تهاجمی | Non-invasive PNET grading using CT radiomics and machine learnin

مرکز تحقیقات رادیولوژی نوین و تهاجمی | Non-invasive PNET grading using CT radiomics and machine learnin
logo

مرکز تحقیقات رادیولوژی نوین و تهاجمی

دانشگاه علوم پزشکی تهران

 

فعالیتهای مرکز تحقیقات رادیولوژی در حوزه هوش مصنوعی

با توجه به حجم گسترده داده‌های تصویری که روزانه تولید می‌شود، مراکز تحقیقات رادیولوژی پتانسیل عظیمی برای بهره‌گیری از هوش مصنوعی دارند. این فناوری می‌تواند دقت و سرعت تشخیص بیماری‌ها را به طور چشمگیری بهبود بخشد و به رادیولوژیست‌ها در اتخاذ تصمیمات بالینی آگاهانه کمک کند. در ادامه برخی از فعالیت‌های مراکز تحقیقات رادیولوژی در حوزه هوش مصنوعی آورده شده است:

MRI

 (تصویربرداری تشدید مغناطیسی) یک روش تصویربرداری پزشکی غیرتهاجمی است که برای تولید تصاویر دقیق از اندام‌ها، بافت‌ها و ساختارهای داخلی بدن استفاده می‌شود. این فناوری از میدان‌های مغناطیسی قوی و امواج رادیویی برای تولید تصاویر با وضوح بالا بهره می‌برد. برخلاف اشعه ایکس یا سی‌تی‌اسکن، MRI از پرتوهای یونیزان استفاده نمی‌کند و به همین دلیل برای بیماران ایمن‌تر است.

 

1-  توسعه الگوریتم‌های تشخیص خودکار بیماری‌ها:

  • تشخیص تومور: توسعه الگوریتم‌هایی برای تشخیص خودکار انواع تومورها در تصاویر رادیولوژی (مانند سی‌تی اسکن، ام‌آر‌آی و پت اسکن).
  • تشخیص بیماری‌های ریوی: تشخیص خودکار بیماری‌هایی مانند پنومونی، کووید-۱۹ و فیبروز ریوی.
  • تشخیص بیماری‌های قلبی-عروقی: تشخیص زودهنگام بیماری‌های قلبی-عروقی مانند آنوریسم آئورت و تنگی عروق کرونر.

 

۲. بهینه‌سازی فرآیندهای تصویربرداری:

  • کاهش دوز پرتو: توسعه الگوریتم‌هایی برای کاهش دوز پرتو در حین انجام تصویربرداری، به ویژه برای کودکان و زنان باردار.
  • بهبود کیفیت تصاویر: استفاده از هوش مصنوعی برای بهبود کیفیت تصاویر رادیولوژی و کاهش نویز.
  • تسهیل تفسیر تصاویر: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تفسیر تصاویر رادیولوژی، مانند برجسته‌سازی مناطق مشکوک.

 

3. تحلیل داده‌های بزرگ (Big Data):

  • شناسایی الگوها: استفاده از الگوریتم‌های یادگیری ماشین برای شناسایی الگوهای پنهان در داده‌های رادیولوژی و کشف ارتباطات جدید بین بیماری‌ها و عوامل خطر.
  • پیش‌بینی پیشرفت بیماری: پیش‌بینی روند پیشرفت بیماری در بیماران مبتلا به بیماری‌های مزمن.
  • ارزیابی اثربخشی درمان: ارزیابی اثربخشی روش‌های مختلف درمانی بر اساس داده‌های رادیولوژی.

 

 

 

4. توسعه ابزارهای کمک‌تشخیصی:

  • کمک به رادیولوژیست‌ها: توسعه ابزارهایی برای کمک به رادیولوژیست‌ها در تشخیص بیماری‌ها، مانند ابزارهای اندازه‌گیری خودکار و طبقه‌بندی خودکار ضایعات.
  • تفسیر گزارش‌های رادیولوژی: توسعه سیستم‌هایی برای تفسیر خودکار گزارش‌های رادیولوژی و استخراج اطلاعات کلیدی.

 

۵. همکاری با سایر حوزه‌ها:

  • همکاری با مهندسان نرم‌افزار: توسعه و پیاده‌سازی الگوریتم‌های هوش مصنوعی.
  • همکاری با متخصصان پزشکی: اعتبارسنجی مدل‌های هوش مصنوعی و اطمینان از اثربخشی آن‌ها در محیط‌های بالینی.
  • همکاری با دانشمندان داده: جمع‌آوری، پردازش و تحلیل داده‌های رادیولوژی.

 

۶. آموزش و پژوهش:

  • آموزش پرسنل: برگزاری دوره‌های آموزشی برای آشنایی پرسنل مرکز با مفاهیم و کاربردهای هوش مصنوعی در رادیولوژی.
  • انجام پژوهش‌های بنیادی: انجام پژوهش‌های بنیادی در حوزه هوش مصنوعی برای رادیولوژی به منظور توسعه الگوریتم‌های جدید و بهبود روش‌های موجود.
  • انتشار مقالات علمی: انتشار نتایج پژوهش‌ها در مجلات معتبر علمی.

 

جمع‌بندی:
با توجه به پیشرفت‌های سریع در حوزه هوش مصنوعی، نقش آن در رادیولوژی در آینده بیش از پیش پررنگ خواهد شد. مرکز تحقیقات رادیولوژی می‌تواند با سرمایه‌گذاری در این حوزه، سهم بسزایی در پیشرفت‌های پزشکی و بهبود خدمات تشخیصی ایفا کند.

 

دستاوردهای علمی مرکز در زمینه هوش مصنوعی به شرح زیر می باشد:

 

  • تاریخ انتشار : 1404/03/21 - 09:47
  • : 108
  • زمان مطالعه : 1 دقیقه

Non invasive PNET grading using CT radiomics and machine learning

Non-invasive PNET grading using CT radiomics and machine learning {faces}

Pancreatic cancer is a major cause of cancer-related fatalities globally, with a poor prognosis. Machine learning-based medical image analysis has emerged as a promising approach for improving clinical decision-making. The purpose is to determine the most effective machine learning method and phase of CT scan to provide clinicians with an efficient tool for accurately identifying pathological grades of pancreatic neuroendocrine tumours (PNET). This will be achieved by analysing contrast-enhanced computed tomography scans of both arterial and portal phases. An investigation was conducted on a cohort of 100 patients diagnosed with pancreatic neuroendocrine tumours. Radiomic features were extracted using Pyradiomics. These features were subsequently utilised in different machine learning classifiers. The classification model’s performance was assessed using sensitivity, specificity, area under the curve (AUC) and accuracy metrics. Our analysis demonstrates that combining CT-based radiomic features with a machine-learning approach can identify the pathological grades of pancreatic neuroendocrine tumours. the combination of Portal_RFE and K-Nearest Neighbour (KNN) demonstrated the highest predictive performance with an AUC of 0.76 and 0.69 in training and validation models, respectively. The use of CT radiomic features and machine learning effectively determines PNET pathological grades, aiding in classifying patients for clinical decisions.

  • Article_DOI : 10.21203/rs.3.rs-3827225/v1
  • نویسندگان : faeze salahshour ,sajad p shayesteh
  • گروه خبر : پژوهش,research article,AI
  • کد خبر : 299518
نفیسه السادات قوامی
تهیه کننده:

نفیسه السادات قوامی

0 نظر برای این مطلب وجود دارد

ارسال نظر

نظر خود را وارد نمایید:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه